# Optimal basis and optical gain matrix for pyramid sensor in the visible

Julia Shatokhina<sup>1</sup>, Christophe Vérinaud<sup>2</sup>, Andreas Obereder<sup>1</sup>, Miska Le Louarn<sup>2</sup>, Ronny Ramlau<sup>1,3</sup>

- 1 RICAM, Austrian Academy of Sciences, Linz, Austria
- 2 European Southern Observatory
- 3 Industrial Mathematics Institute, JKU, Linz, Austria

イロト イヨト イヨト イヨト 三日

1/7

Wavefront Sensing Workshop V + AO Week October 13-15, 2020

## **Optical Gain generalization**

Modal OG:

- rely on calibration procedure  $A_{r_0} = \langle (\mathbf{P}'(\phi_{res})m_i) \rangle_{ens.}$  and reconstructor
- return a scalar value per mode  $\rightarrow$  modal OG vector (off-diagonals?..)
- are very suitable for modal control

#### Zonal OG ?

- Literature: zonal reconstructor discarded, zonal OG is noise-alike, unusable ...
- Linz: good performance with zonal MMSE reconstructor in R band ...

Path forward:

- How does the OG in our zonal basis look like?
- OG = OG (REC details):

mmse/map, regularization, calibration amplitudes, wavefront representation basis basis (e.g., zonal – DM IFs or artificial), inversion method, mode filtering, etc.

#### **Optical Gain Matrix**

• Assume  $Z = \{z_j\}, M = \{m_j\}$  are complete, invertible, span the same spaces,

$$M = ZB.$$

Due to linearity of calibration and averaging

$$A_{mod}(0) = A_{zon}(0)B, \qquad \langle A_{mod}(res) \rangle = \langle A_{zon}(res) \rangle B.$$
 (1)

• Define zonal  $R_{zon}: s \to \phi_z$  and modal  $R_{mod}: s \to \phi_z$  WF reconstructors as

$$A^{-1} := (A^{T}A + \alpha C^{-1})^{-1}A^{T},$$
(2)

$$R_{zon} = A_{zon}^{-1}, \qquad R_{mod} = BA_{mod}^{-1}.$$
 (3)

• Theory vs practice (condition number)

$$R_{zon} = R_{mod}.$$
 (4)

<ロ> < 団> < 団> < 豆> < 豆> < 豆> < 豆 > < 豆 > < < > へへの 3/7

### **Optical Gain Matrix (cont.)**

• Define OG matrix = OG matrix(basis,  $R, r_0, \lambda$ )

$$G_Z := \langle A_{zon}(res) \rangle^{-1} A_{zon}(0), \qquad G_M := \langle A_{mod}(res) \rangle^{-1} A_{mod}(0).$$
(5)

- Using same information (= calibration), but not using the norms
- By construction,  $G_Z$  is well-defined

$$G_Z B = B G_M. \tag{6}$$

• Theorem:

modal and zonal OG corrections are equivalent and can be applied with any (modal or zonal) reconstructor,

$$OGC_{zon}(R_{zon}) = OGC_{mod}(R_{mod}).$$
(7)

## Zonal OGM





- Purity, diagonal approximation  $\rightarrow$  scalar gain for zonal basis, boundary effects
- $G_Z = G_Z(zonal \ basis \ type, ...)$ (virtual basis is Linz' decoupled approach, DM IFs otherwise)

## Numerical results: half-ELT setting

| Latency 2 frames |                                 | K-band Strehl |
|------------------|---------------------------------|---------------|
| (1)              | Modal MAP + scalar OG [2]       | 60,0          |
| (2)              | Modal REC + scalar OG [1]       | 60,9          |
| (3)              | P-CuReD + scalar OG [2]         | 64,2          |
| (4)              | Modal REC + modal OGV [1]       | 64,6          |
| (5)              | Zonal MMSE + scalar OG [2]      | 65,2          |
| (6)              | Modal REC + full modal OGM      | tbd           |
| (7)              | Zonal MMSE + full zonal OGM     | tbd           |
| (8)              | Houdini (direct projection) [2] | 74,0          |

| Half-ELT setting       |            |  |
|------------------------|------------|--|
| telescope diameter D   | 19m        |  |
| central obstruction    | no         |  |
| spiders                | no         |  |
| sensing wavelength     | 658nm      |  |
| frame rate             | 500 Hz     |  |
| modulation             | 4 lambda/D |  |
| number of subapertures | 38         |  |
| number of actuators    | 39         |  |
| r0 at 500nm            | 0,09m      |  |
| subaperture size d     | 0,5m       |  |
| latency, frames        | 2 and 3    |  |
| guide star magnitude   | 13         |  |
| photons/subap/frame    | 40         |  |

• diagonal approximation (scalar in zonal case)

- (4,5): diagonal zonal OGM approximation is good! uniform sensor response to all virtual IFs
- (8) Houdini gives a best estimate (a non-linear reconstructor could achieve)
- (6-7): using full zonal/modal OGM will improve zonal/modal REC results
- (3) Model-based (calibration-free) REC is good!

イロト イヨト イヨト イヨト 三日

 $<sup>^1 \</sup>mbox{Results}$  from COMPASS kindly provided by V. Deo  $^2 \mbox{Results}$  obtained in OCTOPUS

#### Thanks

Thanks to my collaborators!

Special thanks to Vincent Deo!

7/7