
Data-driven subspace predictive 
control of adaptive optics
for high-contrast imaging

Sebastiaan Haffert

NASA Postdoctoral
Hubble Fellow
University of Arizona

Wavefront sensing in the VLT/ELT era 2020
15 October 2020

“Data-driven subspace predictive control of adaptive optics for high-
contrast imaging.”, 

Sebastiaan Y. Haffert, Jared R. Males, Laird M. Close, Kyle Van Gorkom, 
Joseph D. Long, Alexander D. Hedglen, Olivier Guyon, Lauren Schatz, 

Maggie Kautz, Jennifer Lumbres, Alex Rodack, Justin M. Knight, He Sun, 
Kevin Fogarty, under review



Temporal control errors page 1 | 20

shaffert@arizona.edu

Cantalloube et al. 2020

τ0 = 9ms

τ0 < 4ms

• The impact on the spatial-
resolution of instruments is not 
very strong.

• But there is a strong impact on 
the post-coronagraphic 
contrast.
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Cantalloube et al. 2020

τ0 = 9ms

τ0 < 4ms

• The impact on the spatial-
resolution of instruments is 
not very strong.

• But there is a strong impact 
on the post-coronagraph 
contrast.

We need to correct the wavefront errors before 
they appear!
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▪ I would like a linear model because those are easy to analyze.

▪ Therefore, we need to work in closed-loop because we may have non-
linear behavior in open-loop control.

▪ The control law needs to be adaptive to be robust against changes in the 
atmospheric conditions.

▪ A model free approach is preferred, because we do not know how well 
we know the actual the system and the disturbances.
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𝑒0, 𝑒1⋯𝑒𝑁

Time series of 
measurements

Time series of 
commands

Δ𝑢0, Δ𝑢1⋯Δ𝑢𝑁
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𝑒0, 𝑒1⋯𝑒𝑁

Time series of 
measurements

Time series of 
commands

Δ𝑢0, Δ𝑢1⋯Δ𝑢𝑁

Now choose how much of the past and future data you want to connect. 

𝑒𝑝 =

𝑒𝑖
⋮

𝑒𝑖−𝑁
𝑒𝑓 =

𝑒𝑖+𝑀
⋮

𝑒𝑖+1
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Type equation here.

𝑒0, 𝑒1⋯𝑒𝑁

Time series of 
measurements

Time series of 
commands

Δ𝑢0, Δ𝑢1⋯Δ𝑢𝑁

Now choose how much of the past and future data you want to connect. 
And just add a matrix in between! 

𝑒𝑓 = 𝐴 𝐵 𝐶

𝑒𝑝
Δ𝑢𝑝
Δ𝑢𝑓

𝑒𝑝 =

𝑒𝑖
⋮

𝑒𝑖−𝑁
𝑒𝑓 =

𝑒𝑖+𝑀
⋮

𝑒𝑖+1



Data-driven subspace predictive control
page 4 | 20

shaffert@arizona.edu

𝑒𝑓 = 𝐴 𝐵 𝐶

𝑒𝑝
Δ𝑢𝑝
Δ𝑢𝑓
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𝑒𝑓 = 𝐴 𝐵 𝐶

𝑒𝑝
Δ𝑢𝑝
Δ𝑢𝑓

The past errors are necessary because the errors are what drive the system.
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𝑒𝑓 = 𝐴 𝐵 𝐶

𝑒𝑝
Δ𝑢𝑝
Δ𝑢𝑓

The past commands are required because the deformable mirror does not 
react instantaneously. And it could have a complicated temporal response!
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𝑒𝑓 = 𝐴 𝐵 𝐶

𝑒𝑝
Δ𝑢𝑝
Δ𝑢𝑓

The future commands are necessary because the deformable mirror will be 
commanded in the future and that will have an influence on the wavefront
errors.
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Haffert et al. 2020 under review
Favoreel et al. 1999

B. Huang and R. Kadali 2008

𝑒𝑓 = 𝐴 𝐵 𝐶

𝑒𝑝
Δ𝑢𝑝
Δ𝑢𝑓
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• In principle we could feed the algorithm the slopes (or whatever measurement the 
wfs spits out) and let it learn the complete spatial-temporal interaction matrix 
directly.

• However, due to the large number of modes (>1000) it is computationally expensive.

• Therefore, we use a distributive approach where we control each individual spatial 
mode. This assumes little spatial-temporal cross-coupling between the modes.

WFS
Reconstruct modal coefficients
(matrix-vector-multiplication)

Apply DDSPC to each mode 
separately.

DM
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AO system parameters

Telescope diameter 6.5 m

Number of actuators across the pupil 50

Sensing wavelength 0.8 um

Science wavelength 1 um

Loop speed 1000 Hz

System delay 2 frames

Wavefront sensor Direct phase sensor
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Model training / System identification
We start by adding random binary noise on 
the actuators to let the system learn about 
itself. 

Training / System identification
With random binary noise
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Model training / System identification
We start by adding random binary noise on 
the actuators to let the system learn about 
itself. 

Long-term stability test
We run the system for 30000 iteration.
And even after 30000 iterations we still see 
improvement in the rejection.
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The online learning improves 

as 
1

𝑡
. This is the statistically 

optimal learning rate if data 
samples are uncorrelated.

The learning rate puts a limit 
on how fast the model can 
adapt to changing 
atmospheric conditions.
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Instantaneous control Integral control DDSPC
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x500

x400

x200
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x5

• Improvement even with a completely 
non-stationary atmosphere. But, with 
less additional rejection.

• Starlight rejection improvement is 
roughly  52 = 25 in the very strong non-
stationary case.



MagAO-X page 15 | 20

shaffert@arizona.edu

Males et al. 2018
Close et al. 2018

Woofer: Alpao DM97

Tweeter: BMC 2K

PWFS: OCAM 2K 
EMCCD

Pyramid

Sci/WFS B/S

f/11 input
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• Using the Alpao 97 DM 

• 86 modes could be controlled

• We are using the DM to create 
and control the turbulence.
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Difference shows temporal stability.
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Difference shows temporal stability.
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Difference shows temporal stability.

ΔM = 11.3

C = 3 ⋅ 10−5
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• We have derived and implemented a new distributed predictive controller for high-
contrast imaging.

• Simulations show 2 orders of magnitude improvement for frozen flow, but only 1 order 
of magnitude for the non-stationary turbulence.

• We have tried the algorithm in the lab and have been able to successfully close the 
loop!
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• Current work is focused on implementing a high-speed version in the RTC of MagAO-X.

• Figure out how much additional effects such as photon noise and boiling of the 
atmosphere impact the predictability.

• We need to investigate what the optimal hyper parameters of the controller are.
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• Current work is focused on implementing a high-speed version in the RTC of MagAO-X.

• Figure out how much additional effects such as photon noise and boiling of the 
atmosphere impact the predictability.

• We need to investigate what the optimal hyper parameters of the controller are.

Questions?


