Exoplanets and their Direct Imaging

Direct Imaging allows to measure:

Position Constrain the orbits such as eccentricity, time period, mass
 Flux • Temperature, Geometric albedo, constrain the habitability
 Study planet rotation
 Detect clouds/ surface features
 Spectra;
 Study the chemical composition of exoplanet atmosphere

Post Coronagraphic Images

HR8799 behind coronagraph With its planets. (Currie et al. 2019)

> HD1160 behind coronagraph With its young brown dwarf companion. (Garcia et al. 2017)

How do we measure the flux and position of the companion precisely?

Satellite Spots

Satellite Spots

- Distance between the satellite spots is proportional to the sine wave frequency.
- Intensity of 1^{st} order spot \propto (Amplitude)²

• Orientation of the satellite spots is proportional to the orientation of the sine wave.

Making Spots incoherent with background halo

1. The Satellite Spots interfere with the Underlying Background halo

2. Making satellite speckle independent of the background

t= 0:
$$I_{t1} = A_h^2 + A_s^2 + 2A_hA_s\cos(\varphi)$$

t= 0+ δ : $I_{t2} = A_h^2 + A_s^2 + 2A_hA_s\cos(\varphi + \pi)$
 $(I_1+I_2)/2 = A_h^2 + A_s^2$ At high speed within an exposure

Stability of Incoherent Satellite Spot

AO Workshop Week II

Solution to remove the Underlying Background

- Generate incoherent satellite speckles
- Alternate the spatial pattern between each exposure
- Dynamically measure the background lying beneath the incoherent satellite spots, and subtract them from total flux.

On-sky Images of HR8799 taken with CHARIS

Implementation on SCExAO instrument

Pattern Switch Command after a frame is collected-

\rightarrow 1. Change the spatial pattern

(sychronized to science camera's exposure time)

 \rightarrow 2. Switch the phase of each spot by 0 & π at 2kHz

On-sky Images of HR8799 with CHARIS

On-sky Validation

with two different speckle pattern

Corresponding PSF subtracted images

Brighter Grid

On-sky Image of θ Hydrae with 30nm satellite spot CHARIS with two different speckle pattern

Corresponding PSF subtracted images

On-sky Results on θ Hya (Long time series)

Co-added the data frames, and calculated the resultant deviation in the measurement.

Sources of Error

Physical Parameters	Photometry (%)	Astrometry (in mas)
1. Speckle Noise		
-Adaptive Optics	1	0.3
-Non-common Path Aberrations		
2. Photon Noise		
-Stellar Source		
-Background sky emission	0.07	0.02
-stray light		
-Detector quantum efficiency		
3. Readout Noise	0.03	0.01
4. Flat fielding (or pixel sensitivity)	0.3	0.1

Total Noise On-Sky: $pprox \sigma_{s}$

Therefore, move to a regime where I can measure the fast background speckle variation.

Switch the spatial pattern at high speed.

Fast Synchronization with C-RED2

Testing Stability of Satellite Speckle with fast spatial modulation, fast frame rate camera (C-RED2)

• The spatial pattern was switched every ~2 ms.

• This switching was synchronized with C-RED2 (fast infrared camera, frame rate ~2 kHz) camera exposure.

Conclusions

• Demonstrated a practical solution to photometric and astrometric calibration challenging in high contrast imaging.

- Quantitatively demonstrated that relative flux measurement between companion and host is insensitive to Strehl and background PSF halo variation.
- We obtained a photometric accuracy of $\sim 1\%$ in 15s exposures with a 10⁻³ contrast satellite speckle.
- This technique is applicable for orbits, spectra, & time variation measurements from high contrast images
- This technique is now **open to astronomers** as a part of regular science observation.

Thank you!

1 70

