EXOPLANET DIRECT IMAGING: DR WHO

ON SKY NCPA CORRECTION THROUGH THE PYRAMID WAVEFRONT SENSOR REFERENCE UPDATE

NOUR SKAF

Supervisors: Olivier Guyon Anthony Boccaletti

WFS 2020 - Online 14 October 2020 LESIA l'Observatoire | PSL

Laboratoire d'Études Spatiales et d'Instrumentation en Astrophysique

Special thanks to Eric Gendron

ibaru Coronographic Extreme Adoptive Optics すばるコロナグラフ極限補償光学装置

DIRECT IMAGING ...

Credit: Billy Edwards

TECHNICAL CHALLENGES

Speckle subtraction

Currie et al. 2019

Speckles = atmospheric residuals + NCPA

TECHNICAL CHALLENGES

Several kinds of NCPA...

Each kind having low and high spatial frequencies

TECHNICAL CHALLENGES

Several ways to deal with NCPA...

Can partially be solved by changing the gain

DRWHO

Direct Reinforcement Wavefront Heuristic Optimisation

Problematic : what is the pyramid reference ?

The WFS reference is measured with an internal source, before the observations

BUT, this reference is constantly evolving, and is different on-sky than with the internal source.

Essential need of a continuous way to measure the WFS reference

WFS reference 🗲 ideal reference

Goal : find what is the closest from it

special difficulty bonus for a PyWFS and all its tricky lovely annoying non-linearities

While the AO loop is running : live update of the pyramid reference

While the AO loop is running : live update of the pyramid reference I - On a 30 sec timescale, the algo identifies the best I0% Strehl Ratio (SR = reward - could be contrast, sharpness, minimum intensity etc)

While the AO loop is running : live update of the pyramid reference

I - On a 30 sec timescale, the algo identifies the best 10% Strehl Ratio (SR = reward - could be contrast, sharpness, intensity etc)

2- Take the corresponding WFS measurements

While the AO loop is running : live update of the pyramid reference

I - On a 30 sec timescale, the algo identifies the best 10% Strehl Ratio (SR = reward - could be contrast, sharpness, etc)

2-Take the corresponding WFS measurements

3- Average them - weighted on the SR value

While the AO loop is running : live update of the pyramid reference

I - On a 30 sec timescale, the algo identifies the best 10% Strehl Ratio (SR = reward - could be contrast, sharpness, etc)

2-Take the corresponding WFS measurements

3- Average them - weighted on the SR value

4- The resulting WFS frame replaces the WFS reference (with an integrator filter)

DRWHO

Problematic : what is the pyramid reference ?

While the AO loop is running : live update of the pyramid reference

I - On a 30 sec timescale, the algo identifies the best 10% Strehl Ratio (SR = reward - could be contrast, sharpness, etc)

2-Take the corresponding WFS measurements

3- Average them - weighted on the SR value

4-The resulting WFS frame replaces the WFS reference (with an integrator filter)

5- As the algo proceeds, it is continuously rewarded for high quality PSF

Results

Evolution of the PSF quality, on sky (SCExAO), over a 21 min period

750 nm on Vampire

Results

Compass simulation

Without NCPA = 93%

DrWHO 2.0

Take advantage of the difference in spatial frequency in the PSF

the inner donut has a lower spatial frequency than the outer donut > we can **select** part of the image corresponds to some spatial frequency

> 2 (N) loops Dr WHO for each donut and separate lower and higher frequencies to correct each independently.

then, sum up the 2 references found on the WFS

LET'S MAKE MORE DONUTS!

LET'S MAKE MORE DONUTS!

Nour post-lockdown

As many donuts as we want to separate in spatial frequencies

To have an accurate quantification of NCPAs And project the NCPA on the modal basis

(Gendrinou modal basis - Gendron et al 202x)

Dr WHO 3.0 : through Fourier spatial filtering of the WFS images via zones in the PSF

Schematic view

Summer-y - I

Summer-y - ||

- Parallelisation of the optimisation:
 Each area / donut / squares runs optimally in //,
 Each working on separate modes / spatial frequencies
- Flexible in the choice of optimisation :
 - kind of **zones** and their sizes
 - frequency filtering (modal basis / Fourier ...)
 - quantity to optimise : local contrast, Strehl, etc.
 - Dr WHO algo time setting, lucky imaging setting, etc
 SH, PyWFS...
- Possible extension to use DL as an empirical approach through the telemetry to learn the multiple non-linear relationships would be powerful.

Next step: on SCExAO !

Back up slides

DRWHO

Model-based Reinforcement Learning approach

Compass simulation...

IO seconds of loop iterations
→ SR improvement ~ 4%