

A single point spread function model for all adaptive-optics systems

Olivier Beltramo-Martin Laboratoire d'Astrophysique de Marseille

olivier.beltramo-martin@lam.fr

Context : the PSF is the key

PSFAO19 model : model calibration

PSFAO19 model : on-sky verification

Validation on ~4800 PSFs from 7 Vis./NIR instruments

Beltramo-Martin et. al, A&A, 2020

PSFAO19 model : on-sky verification

Validation on ~4800 PSFs from 7 Vis./NIR instruments

- 1. Correlation $\sim 95\%$
- 2. SR error $\sim 3\%$
- 3. FWHM error ~ 0.2 pix

SYSTEM	λ (μ m)	SR (%)			FWHM (mas)				
		Median	bias	std	Pearson	Median	bias	std	Pearson
SPHERE/ZIMPOL	0.55	6.2	0.5	0.3	0.998	32	-4.2	0.9	0.995
	0.64	12.4	0	0.38	0.999	26	1	2.9	0.96
SPHERE/IRDIS	1.67	61	-0.2	2.0	0.98	52	0.2	1.4	0.90
	2.25	80.0	0.7	3.2	0.98	66	0.8	1.5	0.88
GALACSI/MUSE	0.5	2.4	-0.02	0.2	0.993	80	-1.4	2.9	0.997
	0.7	10.3	0.1	0.3	0.998	69	-1.7	3.2	0.980
	0.9	25.0	0.2	0.7	0.998	58	0.08	5.4	0.90
KECK AO/NIRC2	1.65 (NGS)	39.4	1.1	0.9	0.998	37	-0.9	0.8	0.994
	2.2 (LGS)	22	0.7	0.6	0.999	70	-1.9	1.3	0.995
SOUL/LUCI	1.65	36.0	1.2	0.5	0.990	55	-2.5	3.3	0.980
CANARY/CAMICAZ	1.65	23.0	0.1	0.4	0.999	115	-0.1	3.7	0.993
GEMS/GSAOI	1.25	13.3	0	0.5	0.994	109	2.0	5.4	0.976
	1.64	7.6	0.4	0.5	0.990	98	-4.0	3.2	0.98
	2.2	15.6	0.4	0.7	0.994	94	-0.8	4.5	0.970

PSFAO19 model : on-sky verification

APPLY ANR : increase the estimation robustness with CNN

Preliminary results

>99% of correlation - Primary parameters are estimated with ~0.2% of error VGGNet - 5 conv. layers - 3 dense layers- trained with 500k simulated PSFs - no noise

PSFAO19 model : including telescope aberrations

PSF model : PSF ($\mu_{\text{stat}}, r_0, C, A, \alpha, p, \beta$) $\propto F^{-1}[OTF_{\text{teL}}(\mu_{\text{stat}}).exp(F^{-1}[PSD(r_0, C, A, \alpha, p, \beta)])]$

PSFA019 model : including telescope aberrations

PSF model : PSF ($\mu_{\text{stat}}, r_0, C, A, \alpha, p, \beta$) $\propto F^{-1}[OTF_{\text{teL}}(\mu_{\text{stat}}).exp(F^{-1}[PSD(r_0, C, A, \alpha, p, \beta)])]$

PSFAO19 model : enhance astrometry/photometry

GeMS/GSAOI simulations of R136 observations

PSFAO19 model : enhance astrometry/photometry

PSFAO19 model : enhance astrometry/photometry

â

Ongoing and upcoming work

1. Convolutional neural networks for telescope/AO diagnostic

No	Training with	Model	on-sky
noise	noisy data	errors	tests

2. PSF recovery from AO control loop data with machine learning

- PSFA019 parameters estimation from AO telemetry
- PhD thesis LAM/ONERA/ESO to start in sept. 2021
- 3. PSF determination for IFS with spectral regularization
 - Perform the PSF recovery from 3D data cubes
 - New PhD student@LAM : Alexis Lau

olivier.beltramo-martin@lam.fr