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The photonic lantern

Photonic device that converts light from a multi-mode to transition SMF cores
single-mode system and vice-versa with low loss o i -
e.g. 1 MMF to multiple SMFs - - ~ -
- -—r

Direct relationship between input modes excited and
output SMF flux (information preserved -> light preserved)

Proposed use in astronomy to allow single-mode-
spectroscopy despite seeing

Used in telecommunications in SDM
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Photonic lantern as wavefront sensor

Use fluxes at SM outputs to infer wavefront...

Modes excited at MM input are a function of complex
amplitude of light -> SM outputs are also

If transfer function is known, can work backwards and predict

wavefront
- Note TF is function of both PL itself and injection into MM region

Cannot precisely specify transfer function at design /
manufacture

Key advantages:

True focal plane wavefront sensor with instantaneous
measurement, without linear approximations

Optimally feed light to spectrograph with truly zero non-
common-path
- MCF directly on spectrograph in Tiger configuration

Wavelength information for wavefront sensing! Long sought
after, e.g. for atmospheric scintillation

Scales to multiple astronomical objects in field (MOAQO)

Flat wavefront
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Photonic lantern as wavefront sensor

Focus coefficient (rad)

The transfer function —2.0 ~15 ~1.0 —0.5 0.0 0.5 1.0 1.5 2.0

Output fluxes are a non-linear function of input 1.0~

wavefront (so not a matrix) 0.8 -

Since can’t specify this transfer function during 0.6 -

design, so need to learn it after implementation

Use a deep neural network to learn the transfer
function, and then predict unknown wavefronts
from output fluxes

Output intensity (normalised)
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Laboratory demonstration

Laboratory setup

CAM2

Pupil
plane

Apply arbitrary wavefronts via SLM, inject PSF into MM
region of 19 mode PL

ND
Also includes back-reflection imaging for alignment and r ‘
characterisation CAM3
685 nm (1.2nm bw) g 'mage plane @ POL
L3 LASER
MIR
Training and measurement ;

Generate wavefront by drawing (from uniform distribution)
random Zernike coefficients for first 10 modes - random
combinations probe nonlinearity.

CAM1

Each wavefront on average was r radians P-V

Apply to SLM and measure PL output fluxes for each

Acquired ~60 000 measurements (mUCh more than Back-illuminated fibre PSF - no aberrations  PSF - astig, defocus, coma
needed). ~30 s on modern AO system

Kept 20% secret for testing performance, trained on
other 80%.
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GLINT: Photonic nulling chip...

Uses a 3D photonic chip (ULI) to destructively interfere starlight,

revealing signal of high contrast structure

Telescope pupil imaged onto chip
Remapping + interference via evanescent couplers in chip

10s of outputs, encoding time domain signal as pupll rotates

Photonic equivalent of a coronagraph...
...Image features as close as 0.5 A/D
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The waveguide structure of GLINT, including splitters and directional couplers
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ULI fabrication process at Macquarie University - waveguides
inscribed within glass chip via femtosecond laser



...asS wavefront sensor!

Intensity (AU)

An interferometric wavefront sensor
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Both for its own fringe-tracking, but also as low-order
WEFES for entire EXAO system 50

Different parts of the pupil directly interfered with each
other -> robust to phase shear e.g. across spiders

100
Directly measures low wind effect s
Spectrally dispersed allows phase unwrapping Qo
Next: tricouplers (120 deg phase offset) - get direction. g 150
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Conclusion

Adaptive optics limited by current wavefront sensors
Non common to science image & blind to some modes
Image itself degenerate (not phase information)

Multimode fibre Photonic lantern transition Multi-core fibre

Photonic lantern wavefront-sensor:

Senses complex amplitude at image plane
nfers input wavefront injected into MM waveguide by measuring SM output fluxes from PL
| earns transfer function via neural network

Pupil phase Image intensity  Image phase Output intensities

- 0.8

Flat wavefront

o
o

_aboratory tests show high efficacy with RMS wavefront error of 5 x 10-8z radians (for
radian input WFs)

Intensity% (normalised)

+0.8 rad astig
Phase (radians)

0.4

0.2

PL-WFS allows
Zero NCP aberrations,
|deal for fibre-fed spectroscopy and multi-object AO, communications
Wavelength-dispersed WFSIng,
Sensitivity to blind modes

-0.8 rad astig

Photonic chip WFS

- A free ‘side effect’ of photonic nulling interferometer
Directly interfere different pupil regions -> no ambiguity from phase shear
Directly measures low wind effect, etc.
Spectrally deispersed allows phase unwrapping




