`Imaka: a wide field GLAO demonstrator for advanced diagnostics and control

Olivier Lai¹ Ryan Dungee², Eden McEwen³, Caylan Anderson³, Mark Chun², Jessica Lu³, Christoph Baranec², Dora Fohring², Doug Toomey⁴

IAGRANCE

UNIVERSITY of HAWAI'I® HILO

Mauna Kea Infrared, LLC

Berkeley³ UNIVERSITY OF CALIFORNIA

Ìmaka

- Very wide field GLAO demonstrator and development platform on UH2.2m telescope, to explore theoretical and practical limits to very wide fill AO.
- 5 SH WFS with 8x8 subapertures to control 36 element bimorph mirror.
- Wavefront sensors on fixed plate, 18'x24' patrol field
- STA1600 monolothic 10kx10k detector covering 11'x11' science FoV (Hawaii 4RG with 7' soon!)
- Demonstrated and quantified GLAO performance (Abdurrahman 2018)
- Current developments include:
 - Predictor control (to better separate GL from FA)
 - Layer identification (useful for predictor but also site monitoring)
 - Adaptive Secondary Mirror (TNO) demonstrator using new actuators.

Predictor control

- The goal is achieve a better GLAO correction using fewer guide stars
- Achieve this through what we call "temporal tomography"
 - Atmospheric layers usually have different velocities
 - Use principles in predictive control to identify specific layers
 - Filter out layers that do not match the ground layer wind speed, which we can pull from the CFHT weather tower
- Based on Predictive Fourier Control (Poyneer et al. 2007)
 - Each Fourier mode oscillates at a frequency determined by the spatial mode and wind speed
 - Facilitates filtering out temporal frequencies from layers we identify as coming from the free atmosphere

Figure from Poyneer et al. (2007)

A challenge we need to overcome is our lower resolution WFS (8x8 vs 48x48)

Layer identification Temporal Cross Correlation Maps

- Basic Method:
 - Uses WFS Slopes from open loop telemetry
 - Pre-subtracted average slopes and static aberrations
 - Generated time averaged covariance maps and cross covariance maps across WFS

WFS1 WFS1

Eden McEwen

Year	Observing Dates	Num. Nights	Num. Data Files	Field	Num. GSs
2018	03/01 - 03/02	2	75	Beehive-W	5
2018	05/25 - 06/04	9	351	1056 - 03106 - 1	3
2018	08/21 - 08/22	2	58	1056-03106-1	3
2018	12/18 - 12/24	7	618	Orion2	5
2019	02/26	1	52	Beehive-W	5
2020	01/17 - 01/29	7	92	Beehive-W	5

Layer identification

Layer identification Layer Analysis

- Challenges in Analysis: tracking peaks evolution of correlation peak, comparison of different nights worth of data
- Tracking methods tried: algorithms, shortcomings of each (star finder (SF), radial method (RM), maximum peak (MP))
 - SF: weak to peak evolution, spotty detections
 - RM: assume peaks start at center, and multiple peaks
 - MM: sensitive to noise and data w/o peaks
- Post correlation subtraction and windowing provides variable improvements to tracking and analysis

ASM

- Adaptive Secondary Mirror using new technology developed by TNO
- Uses magnetic reluctance actuators

- Strong force, low current, many advantages:
 - Shell can be thicker, rigidly supported, actuators can be spaced further apart, no need for cooling or actuator feedback.
- UH ASM prototype will have 211 actuators with 620mm diameter,
 - Used with 16x16 Robo-AO SH-WFS,
 - and modal control (64 modes) with imaka 8x8 SH-WFS.

Deflectometry

- Problem of convex (Cassegrain) secondary is measuring influence functions and interaction matrices.
- Usually requires optics larger than ASM itself.
- To avoid such expensive equipment, we will use:
 - Partial illumination with transmissive Hindle spherical lens.
- Screen x_s x_c x_c x_m d_{m2c} d_{m2c} d_{m2c} x_m d_{m2c} d_{m2c} x_m d_{m2c} d_{m2c} x_m d_{m2c} d_{m2c} x_m d_{m2c} x_m d_{m2c} x_m d_{m2c} x_m d_{m2c} x_m x_m d_{m2c} x_m x

Deflectometry

Small prototype based on two AMOLED 4k screens and a Raspberry Pi

Hindle sphere lens

- Developed a method to measure interaction matrices on sky in the presence of turbulence.
- Dynamic On-sky Covariance Random Interaction Matrix Estimation
- Method applies small random (but known) commands to deformable mirror (in open or closed loop) and records WFS measurements.
 - Turbulence can be attenuated by high pass temporal filtering,
- Advantage of measuring imat in same conditions as used (dynamic effects)
- Tested with current imaka where access to entrance focus allows direct comparison of both methods.

• $\mathbf{m} = D \cdot \mathbf{c}$ $\mathbf{m}_{\xi}(t) + \mathbf{m}_{a}(t) = D \cdot \mathbf{c}_{\xi}(t),$ Multiply both sides by $\mathbf{c}_{\xi}(t)^{T}$ and take time average $< \mathbf{m}_{\xi}(t) \cdot \mathbf{c}_{\xi}(t)^{T} > + < \mathbf{m}_{a}(t) \cdot \mathbf{c}_{\xi}(t)^{T} > = D < \mathbf{c}_{\xi}(t) \cdot \mathbf{c}_{\xi}(t)^{T} >$ we measure $\mathbf{m} = \mathbf{m}_{\xi} + \mathbf{m}_{a}$ but $< \mathbf{m}_{a}(t) \cdot \mathbf{c}_{\xi}(t)^{T} > \rightarrow 0$ Therefore $D = < \mathbf{m}_{\xi} \cdot \mathbf{c}_{\xi}^{T} > \cdot < \mathbf{c}_{\xi} \cdot \mathbf{c}_{\xi}^{T} >^{-1}$

JYNAMIC NSKY COL

NB. Random commands covariance matrix $< \mathbf{c}_{\xi} \cdot \mathbf{c}_{\xi}^{T} >$ is diagonal, accurate inversion.

GLAC FWFM with different amats (5 sequences)

Conclusion

- Predictor controller is being developed
- Covariance maps used to identify layers and their speed
- TNO ASM to be integrated in Netherlands in early 2021, integration at Telescope Summer 2021
- New method to obtain on-sky interaction matrices in open and closed loop, DOCRIME
- Groundwork for Keck ASM and GLAO