
Gilles Orban de Xivry, M. Quesnel, G. Louppe, O. Absil 
Wavefront Sensing in the VLT/ELT era V & AO Workshop Week II — October 2020

Focal-plane wavefront sensing using 
machine learning



Focal plane wavefront sensing

Pro’s  
• High sensitivity


• Simple opto-mechanically


• No NCPA or chromatic errors
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Con’s  
• High computational cost


• Phase ambiguity



Focal plane wavefront sensing
Two regimes
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NCPA AO

Aberration level 100-500nm rms 1-5µm rms

Correction timescale >1sec 1ms

Spatial frequency 
[number of modes]

~20 on a VLT

~100 on a ELT

~100 on 2-4m

~>400 on a 8m


> 4000 on a 40m

Expected residuals ~20nm rms ~100nm rms

Phase Sorting 
Interferometry Principles

Method of correction for NCPA in the image frame.

Utilises fast evolving speckles as a source of diversity to 
modulate the quasi-static speckles.

These unwanted, but inevitable, speckles interfere 
coherently with the static halo, exhibiting a sinusoidal 
variation in intensity.

This enables the measurement of the quasi static halo and 
application of a correction.

Because we are not inserting artificial probes, PSI has a 
superior duty cycle to other proposed methods as we lose 
no science frames.

There is also no requirement for additional hardware.

M. Willson @ULiege

High-contrast image

✴Also cophasing (JWST, ELT)



Simulation setup
“Labelled" dataset generation

✴λ = 2200nm


✴Diameter = 10m


✴Input WFE = 70-350nm (0.2 - 1 rad)


✴Nb modes = 20 - 100 Zernike ; Power law over spatial frequency


✴Pixel scale = 0.2 λ/D. (0.01’’/pix)


✴FoV = 28.5 λ/D (1.4’’)


✴Size : 100,000 entries
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Simulation setup
Network architectures

ResNet-50    vector 


U-Net           phase map. 


Loss function       
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Background

training of the network will also take advantages of the pretrained weights of the model
on Imagenet to speed-up the training.

Figure 2.13: VGG-16 architecture. [22]

Resnet

About a year later in 2015, Residual Neural Network (ResNet) [23] appeared and in-
troduced an innovative architecture based on skip connections and systematic batch
normalization. One of the motivations of this architecture is the vanishing gradient
problem. In very deep neural networks, the intensity of gradients may decrease from lay-
ers to layers during the backpropagation steps. To overcome this issue, the introduction
of skip connections ensure the smooth and easy flow of the gradients. This architecture
enables to create very deep networks with up to 152 successive layers.

Figure 2.14: Resnet-34 architecture. [23]

Inception v3

The inception v3 architecture [24] proposes an alternative to the assembly conventional
layers: instead of creating very deep networks which are particularly difficult to optimize,
the idea is to make the network wider instead of deeper. The solution is to use at the
same level multiple filters of different sizes and shapes. For example, 1⇥1, 3⇥3 and 1⇥7

convolution kernels are applied to the same feature map and each one detects specific
patterns depending on its receptive field properties. Secondly, it also uses an auxiliary
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ResNet

U-Net

- CNN readily available

- Last layer modify to perform regression instead of classification



Metrics
Fundamental limit and robustness

• Particular nature of light: photon noise


• Fisher information matrix  [1]                                 per independent mode j                   


• Most sensitive: Zernike wavefront sensor  [2]     


• Focal plane sensitivity is further reduced  


  [rad]

σ2
j ≥ 1/(4Nph)

σ2
j ≥ 1/(2Nph)

σFP =
Nzern

nimgNphotons
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[1] Paterson 2008, 2013

[2] N’Diaye et al. 2013



Results
Fundamental limit

✴ Every point uses a different model


✴ Evaluation on 100 entries


✴ ‘Excess' error for larger level of aberrations 
and large flux


✴ Prior information at low flux level
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Results
Dynamical range

✓ Below training : constant accuracy 


~ Above training : quickly increasing
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Trained at 350nm rms WFE

Trained at 70nm rms WFE

Trained around here

Input = residual error



Results
Dynamical range: application in closed-loop
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~1µm rms WFE input

~320nm rms WFE input

Input

Input After 20iter

After 20iter

Works well beyond training range



Results
Higher order disturbances

✴Better drowning the fish with photon noise rather than revealing disturbances


✴Adapt learning strategy 
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Results 
Phase diversity and sign ambiguity

• Training with 


- One in-focus


- One out-of-focus


- Two PSFs
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One defocussed image:  prior on sign


x √2 due to reduce SNR

In-focus image

Even mode ambiguity



Analysis and discussion
Computational cost

✦ AO application at 1kHz        8-16 TFLOPs  — RTX2080Ti provides >13TFLOPs 


✦ Training time for a sample of 100,000 entries (2xGPU RTX2080Ti): <350sec / epochs, or <20hr for 200 epochs
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Architectures
Number of 
parameters 

(M)
FLOP (G) Model size 

(MB)

ResNet-50 23.71 8.22 91

U-Net 13.40 15.54 52

For 128x128 gridsizes and 100 Zernike’s



Analysis & discussion
Mixture density networks

• Adding a mixture density layer to ResNet


• Predict probability distributions 

  Degeneracy becomes explicit (i.e. sign ambiguity)

  Information on error


• Con’s : requires larger training dataset
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Fig. 1: Mixture Density Network: The output of a neural
network parametrizes a Gaussian mixture model.

• studying the influence of a wide range of model
hyper-parameters (dataset granularity, inputs configura-
tion, ANN architecture).

This study is structured into three parts. First, we provide a
brief overview over the methods used in this study. Secondly,
we describe the setup and implementation of the experiments
conducted in this study and finally, we provide and discuss
the results of these experiments.

II. METHOD FUNDAMENTALS

In this section we provide a brief overview over the forecast-
ing methods used in this study. Before covering the density-
estimating neural networks, the following paragraph provides
a short introduction for those readers unfamiliar with neural
networks. Throughout the rest of this paper, y refers to the
forecasted value and x to the lagged inputs used to forecast
this value.

A. Artificial Neural Networks

Neural networks are computing structures, which consist
of interconnected artificial neurons. An artificial neuron is
a function that computes a single output by calculating the
weighted sum of its inputs and applying a non-linear activation
function, e.g. exponential, softmax. Many of such neurons are
connected in layers to form a network, whereby the output of
one layer is fed as input to the following layer. By adjusting
the input weights of each neuron, the resulting network can
be fit to map an input vector to an output vector. With mild
assumptions on the activation function, neural networks can
be thought of as universal function approximators. Fitting
the network weights to represent a function given observed
input and output examples can be done by backpropagation.
Thereby, a so-called error function quantifies how effective the
network captures the relation between input and outputs of the
training examples. Then, the network weights are iteratively
updated towards the direction of a reducing error function.

B. Mixture Density Networks

Conventional least-square regression neural networks can
be derived from maximum likelihood by assuming the target
data to be Gaussian distributed [13]. This motivates the idea
of replacing the Gaussian distribution with a mixture model,
which can model generic distribution functions [13]. Hence,
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Fig. 2: Softmax Regression Network: The output of a neural
network represents the probability of class membership. In
this case class membership means the prediction variable y is
falling into the respective interval.

the probability density of the target data is represented as a
linear combination of kernel functions (Eq. 1)

p(y|x) =
mX

i=1

↵i(x)�i(y|x) (1)

where ↵i(x) are mixing coefficients conditioned on the input
vector x and �i(y|x) represents a kernel function. Gaussian
kernels (Eq. 2) are used in this study as in [13].

�i(y|x) =
1p

2�i(x)2⇡
exp

✓
� (y � µi(x))2

2�i(x)2

◆
(2)

With �i(x) as standard deviations conditioned on x. Therefore,
the output layer of the neural network resembles a parameter
vector [↵i(x), µi(x),�i(x)]. The architecture of the mixture
density model is shown in Figure 1.

Using respective activation functions in the output layer
ensures that the network outputs valid parameter vectors.
In this paper, a softmax activation is used for the mixing
coefficients ↵, and a simple exponential function for the
standard deviations �, while the means are unrestricted. In
a post-processing step, the non-negative load values of the
model are assigned to a positive probability density. Thereby,
the cumulative distribution function is set to zero for negative
electrical loads.

The network can be fit to observations using backpropaga-
tion. Therefore, an error function is defined to quantify the
quality of the PDF forecasted, given observations as a single
scalar. The error function E(y, ŷ) is constructed using the
maximum likelihood criterion by taking the negative logarithm
of the likelihood, also called negative log-likelihood (Eq. 3).

E(y, ŷ) = � lnL(ŷ|x) = � ln p(ŷ|x) (3)

MDNs have been successfully applied to a wide range of
problems, such as financial forecasting [12], weather forecast-
ing [11] or speech synthesis [14], as they can approximate
arbitrary probability distributions. However, there is an alter-
native to MDNs, which approximates the probability density
function at discrete sample points, by binning the output
range of the target variable and applying a softmax activation
function to the network output. This technique is referred as
Softmax Regression Networks (SRNs) and is introduced in the
following section.

Vossen et al. 2018

Context Simulations Modeling Results Conclusion

CNN+MDN: predicted distributions

20 modes; wfe=350nm

Maxime Quesnel University of Liège
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More analyses

• Pixel scale : mild sensitivity


• Varying SNR : relative robustness to be improved by adapting dataset


• Influence of training dataset size


• Application to vector vortex coronagraph


• Comparison to iterative algorithm (Gerchberg-Saxton type)
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Conclusions

• CNN : optimum sensitivity, robustness, flexible 


• Adapt your training strategy


• Lab & on-sky : simulated vs real data for training


• Ensure a source of diversity or prior
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