

Focal-plane wavefront sensing using machine learning

Gilles Orban de Xivry, M. Quesnel, G. Louppe, O. Absil Wavefront Sensing in the VLT/ELT era V & AO Workshop Week II — October 2020

erc

Focal plane wavefront sensing

Pro's

- High sensitivity
- Simple opto-mechanically
- No NCPA or chromatic errors

Con's

- High computational cost
- Phase ambiguity

Focal plane wavefront sensing Two regimes

	NCPA	ΑΟ
Aberration level	100-500nm rms	1-5µm rms
Correction timescale	>1sec	1ms
Spatial frequency [number of modes]	~20 on a VLT ~100 on a ELT	~100 on 2-4m ~>400 on a 8m > 4000 on a 40m
Expected residuals	~20nm rms	~100nm rms

*Also cophasing (JWST, ELT)

High-contrast image

ICDA in Calamaa Camaana

Simulation setup "Labelled" dataset generation

Simulation setup Network architectures

- CNN readily available
- Last layer modify to perform regression instead of classification

Loss function

$$RMSE = \sqrt{\frac{1}{N_{pix}} \sum_{i,j}^{N_{pix}} \left[\phi(x_i, y_j) - \hat{\phi}(x_i, y_j)\right]^2}$$

Metrics **Fundamental limit and robustness**

- Particular nature of light: photon noise
- Fisher information matrix [1]
- Most sensitive: Zernike wavefront sensor [2]
- Focal plane sensitivity is further reduced •

$$\sigma_{FP} = \sqrt{\frac{N_{zern}}{n_{img}N_{photons}}}$$
[rad]

$\sigma_i^2 \ge 1/(4N_{ph})$ per independent mode *j* $\sigma_i^2 \ge 1/(2N_{ph})$

[1] Paterson 2008, 2013 [2] N'Diaye et al. 2013

Results Fundamental limit

ResNet-50 for 20 Zernike's

for $T_i = 1 \sec \theta$

- * Every point uses a different model
- * Evaluation on 100 entries
- * 'Excess' error for larger level of aberrations and large flux
- * Prior information at low flux level

ResultsDynamical range

Below training : constant accuracy

~ Above training : quickly increasing

ResultsDynamical range: application in closed-loop

Works well beyond training range

~320nm rms WFE input

~1µm rms WFE input

Results Higher order disturbances

*Better drowning the fish with photon noise rather than revealing disturbances *Adapt learning strategy

Theoretical accuracy

ResultsPhase diversity and sign ambig

11

Analysis and discussion Computational cost

Architectures	Number of parameters (M)	FLOP (G)	Model size (MB)
ResNet-50	23.71	8.22	91
U-Net	13.40	15.54	52

For 128x128 gridsizes and 100 Zernike's

♦ AO application at 1kHz → 8-16 TFLOPs — RTX2080Ti provides >13TFLOPs

Training time for a sample of 100,000 entries (2xGPU RTX2080Ti): <350sec / epochs, or <20hr for 200 epochs</p>

Analysis & discussion **Mixture density networks**

- Adding a mixture density layer to ResNet \bullet
- Predict probability distributions \bullet
 - Degeneracy becomes explicit (i.e. sign ambiguity)
 - → Information on error
- Con's : requires larger training dataset ullet

p(y|x)

Vossen et al. 2018

More analyses

- Pixel scale : mild sensitivity
- Varying SNR : relative robustness to be improved by adapting dataset
- Influence of training dataset size
- Application to vector vortex coronagraph
- Comparison to iterative algorithm (Gerchberg-Saxton type)

Conclusions

- CNN : optimum sensitivity, robustness, flexible
- Adapt your training strategy
- Lab & on-sky : simulated vs real data for training
- Ensure a source of diversity or prior

