Experimental Comparison of Two Focal Plane Wavefront Sensors Behind Fast AO Residuals

Raphaël Galicher

October 13, 2020

Laboratoire d'Études Spatiales et d'Instrumentation en Astrophysique

Context 🚫

Exoplanet imaging from ground

+ 8m-telescopes, VLT (SPHERE), Gemini (GPI), Keck (KPIC), etc

 \rightarrow young Jupiter-like planets at > ~5AU

+ 40m-telescopes, ELT (PCS), TMT (PSI, SEIT, ExAO)

 \rightarrow probing <5AU

 \rightarrow fainter exoplanets (lighter/older)

Needs : High contrast imaging at small angular separation Up to 1e9 - 1e10 at 0.1"

Solutions : Coronagraphs and XAO systems

Raphaël Galicher

Current XAO

Very high strehl But ...

a line

Coronagraph And Wavefront Aberrations

Coronagraph And Wavefront Aberrations

AO residuals + NCPA + amplitude aberrations => stellar speckles

Residual contrast ≈ variance amplitude Unseen by AO systems!

AO residuals + NCPA + amplitude aberrations => stellar speckles

Residual contrast ≈ variance amplitude Unseen by AO systems!

Residual contrast \approx **variance of NCPA phase**

AO residuals + NCPA + amplitude aberrations => stellar speckles

Residual contrast ≈ variance amplitude Unseen by AO systems!

Residual contrast \approx **variance of NCPA phase**

Residual contrast \approx **variance of AO residual /** \int **N** = exposure time / coherence time

Ex: $\sigma_{AO residual} = 1 \text{ nm and } t_c = 3 \text{ ms} \implies -1 \text{ h to reach 1pm}$

AO residuals + NCPA + amplitude aberrations => stellar speckles

Residual contrast \approx **variance amplitude** Unseen by AO systems!

Residual contrast \approx **variance of NCPA phase**

Residual contrast \approx **variance of AO residual /** \int **N** = exposure time / coherence time

Ex: $\sigma_{AO residual} = 1 \text{ nm and } t_c = 3 \text{ ms} \implies -1 \text{ h to reach 1pm}$

Need to

→ use long exposure and very efficient AO systems

→ estimate and compensate any aberration in the science channel

Raphaël Galicher

)

Focal Plane Wavefront Sensing and Control (1/2)

Focal Plane Wavefront Sensing and Control (2/2)

Focal plane wavefront sensing : retrieve electric field from intensity

- → Spatial modulation : Self-coherent camera (SCC), modal WFS, Kernel
- → Temporal modulation : Pair-wise (PW), speckle nulling, phase retrieval

Focal plane wavefront control : minimizing starlight in science image ≠ minimizing pupil phase aberrations!

- \rightarrow Electric field conjugation
- \rightarrow Active Compensation of Aperture Discontinuities
- \rightarrow Non linear dark hole, ...

Our objective Probe & compare in Lab PW/EFC and SCC behind AO residuals

THD2 bench

http://thd-bench.lesia.obspm.fr/

October 13, 2020

Raphaël Galicher

THD2 bench

Simulating SAXO/SPHERE-like system in good conditions

October 13, 2020

Raphaël Galicher

Ao residuals and static speckles in the Lab

Monochromatic coronagraphic Lab images

AO residuals only

AO residuals only

AO residuals only + 6nm static phase + 0.4% static amplitude

Short exposures

Frozen turbulence/speckles Finite long exposure

Unaveraged AO residual speckles (~1nm phase)

Finite long exposure

Unaveraged AO residual + static speckles (=NCPA)

Raphaël Galicher

Full dark hole correction (1/3)

Correction with one DM in pupil plane : optimization in the full FOV (full dark hole) \rightarrow Minimization of phase speckles only

- + images with no correction (left)
- + images after each iteration of pair-wise estimation + EFC correction (middle)
- + images after each iteration of SCC estimation/correction (right)

Full dark hole correction (2/3)

Correction with one DM in pupil plane : optimization in the full FOV (full dark hole) \rightarrow Minimization of phase speckles only

Same movies but "real time" as PW/EFC needs at least 4 images for 1 iteration

Raphaël Galicher

Full dark hole correction (3/3)

Demonstration in Lab

 \rightarrow Focal plane WFS can correct for statics behind AO residuals

 \rightarrow Temporal modulation focal plane WFS is slower than spatial modulation FPWFS because they need more images per iteration

Next step : onsky demonstration

Preliminary results

 \rightarrow Spatial modulation: Galicher et al. 2019

 \rightarrow Temporal modulation: Potier et al. 2020

1e-4 2e-4 3e-4 4e-4 5e-4 6e-4 7e-4 8e-4 9e-4

Thank you

October 13, 2020

Raphaël Galicher

